If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2=784
We move all terms to the left:
6x^2-(784)=0
a = 6; b = 0; c = -784;
Δ = b2-4ac
Δ = 02-4·6·(-784)
Δ = 18816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18816}=\sqrt{3136*6}=\sqrt{3136}*\sqrt{6}=56\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-56\sqrt{6}}{2*6}=\frac{0-56\sqrt{6}}{12} =-\frac{56\sqrt{6}}{12} =-\frac{14\sqrt{6}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+56\sqrt{6}}{2*6}=\frac{0+56\sqrt{6}}{12} =\frac{56\sqrt{6}}{12} =\frac{14\sqrt{6}}{3} $
| 16t-11t-11t-19t=-3 | | -6x+4+10x-3=18 | | 10(q+1)=60 | | 21a+49=( | | 58+0.5x=61+0.25x | | -3x+4+8x=12 | | s9− 3=2 | | s+175/14=19 | | 4r+6=–2r | | 11q-2q-3q+3q-3q=6 | | 15+k=-88 | | -3(4x-5)=75 | | m/6+52=61 | | 17s-16s=13 | | 3(3x+6)=-x-2 | | .60x=135 | | -9p=-10p | | 8(s+19)=-72 | | 2h^+9h-18=0 | | /6x+3x-6=75 | | 10r-8r=20 | | 15d-15d+d-d+3d=18 | | 11.2x=‐60.48 | | -x^2,x=-4 | | 11x+29=7x+65 | | -15x-12=168 | | x2−14x+98=0 | | P=-5x+140 | | 8+2c=-7-3c | | 9h-7h=14 | | 11.2x=‐60.48 | | 3d−2d=11 |